Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing
نویسندگان
چکیده
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.
منابع مشابه
Corrosion Behaviour of Nickel Coated AISI 316 Stainless Steel as a Function of Annealing Temperature
AISI 316 stainless steels were coated with 250 nm Ni film by electron beam deposition and post-annealed at different temperatures with a nitrogen flow of 600 cm3min-1 nitrogen. The prepared samples were corrosion tested in 1.0 M sulphuric acid solution using potentiodynamic technique. Crystallographic and morphological structure of the samples were analyzedanalysed by X-ray diffraction (XRD) an...
متن کاملLong-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects.
A study of the morphological and chemical stability of shape-selected octahedral Pt0.5Ni0.5 nanoparticles (NPs) supported on highly oriented pyrolytic graphite (HOPG) is presented. Ex situ atomic force microscopy (AFM) and in situ X-ray photoelectron spectroscopy (XPS) measurements were used to monitor the mobility of Pt0.5Ni0.5 NPs and to study long-range atomic segregation and alloy formation...
متن کاملSurface Segregation of Fe in Pt–Fe Alloy Nanoparticles: Its Precedence and Effect on the Ordered-Phase Evolution during Thermal Annealing
Coupling electron microscopy techniques with in situ heating ability allows us to study phase transformations on the single-nanoparticle level. We exploit this setup to study disorder-to-order transformation of Pt-Fe alloy nanoparticles, a material that is of great interest to fuel-cell electrocatalysis and ultrahigh density information storage. In contrast to earlier reports, we show that Fe (...
متن کاملIn situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
When exposed to corrosive anodic electrochemical environments, Pt alloy nanoparticles (NPs) undergo selective dissolution of the less noble component, resulting in catalytically active bimetallic Pt-rich core-shell structures. Structural evolution of PtNi6 and PtNi3 NP catalysts during their electrochemical activation and catalysis was studied by in situ anomalous small-angle X-ray scattering t...
متن کاملHydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus
Objective(s): Metal nanoparticles (NPs) offer a wide variety of potential applications in pharmaceutical sciences due to the unique advances in nanotechnology research. In this work, bimetal Ag-Au alloy NPs were prepared and their combinations with other antibiotics were tested against Staphylococcus aureus. Materials and Methods: Firstly, Ag-Au alloy NPs with Au/Ag molar ratio of 1:1 was f...
متن کامل